
					Issued Date Issued By		Doc. # Issued Rev	382-R0 0
Tasl	hida							
Model: N	MEGP02006D					IEC Graphene		
= T		1 1				I		
HP	kW	Pole	FL RPM	Frame	Voltage	Hz	Phase	FL Amps
268	200	6	1195	355M	230/380/460	60	3	637/369/319 Ambient
Enclosure	IP	Ins. Class	S.F.	Duty	Nom. Eff.	IEC Design	kVA Code	Temp. (°C
TEFC Inventer Duty	55	F (*)	1.15	S1	IE3-95.8	Ν	-	40
Inventer Duty								
oad	HP	kW	Ampe	eres	Efficiency (%)		Power Factor (%)	
ull Load	268	200	319	.0	95.8		86.0	
4 Load	201	150	249	.0	95.5		82.6	
2 Load	134	100	187	.0	94.6		74.3	
4 Load	67	50	136	.0	91.7		52.5	
lo Load			100	.0			25.4	
ocked Rotor			2468	3.0		-	0.3	
(N-m)	!		(% FLT)		(% FLT)		(% FLT)	
(N-m) 1599		(% F 218			FLT) 65.4	(% FLT) 319.0		(Kg-m²) 12.2669
Safe Stall T	ime(s)	Sound		Bear	rings*		Approx. Motor Weight	
Cold / Hot		Pressure dB(A) @ 1M	DE		NDE		(kg)	
oola / I	54.3/31.7				6322C3		1674	
	.7	-	6322	2C3	63220	3	1674	4
54.3/31 Bearings are the only rec	commended spar		6322	2C3	63220	3	167	4
	commended spar	re part(s).	6322	Doc. Written By	63220	23 Doc.# / Rev	167-	

						Issued Date	11/14/2022	Doc. #	382-R0
						Issued By	LD	Issued Rev	0
	las	hida			_				
			S	PEED TORC	QUE/CURREN	IT CURVE			
	Madalı	MECDODOCODOT	DI			Corio			
	Model:	MEGP02006D3T	DL			Serie:	IEC Graphene		
	HP	kW	Pole	FL RPM	Frame	Voltage	Hz	Phase	FL Amps
	268	200	6	1195	355M	230/380/460	60	3	637/369/319
Enc	closure	IP	Ins. Class	S.F.	Duty	Nom. Eff.	IEC Design	kVA Code	Ambient Temp. (°C)
1	TEFC	55	F (*)	1.15	S1	IE3-95.8	Ν	-	40
Lock	ed Rotor	Rotor Inertia				Torque			
	mps	(Kg-m2)	Full Load	(N-m) (%)		Pull L		Break Down	
	0400	10.0000				(%)		(%) 319.0	
	2468	12.2669	1599	218	0.0	165.4	•	319	.0
	5500							30	000
	5500 ┌─		Curren	t vs Slip Curv	ve and Torque	e vs Slip Curv	e	30	000
								$ \wedge $	
	4500							25	500
_	3500							20	000
Ξ							\rightarrow		
(M-N)anb.	2500 -							1:	ent(
rqu	4500								Current(A)
Ton	1500 -								00 0
	500 -							50	00
	-500 L 1	0.9	0.8 0.	7 0.6	0.5 0.	4 0.3	0.2 0	.1 0	
	•	0.0	0.0 0.			Current	-Torque		
				Slip (p	bu)	Carloin	Torquo		
l charac		verage expected value	es.						
	Engineering Engr. Date				Doc. Written By Doc. Approved By		Doc.# / Rev	MEGP0200	6D3TBL
							Doc. Issued		

<u>bisuedbi</u> <u>do</u> <u>bisued koi</u> <u>do</u>				Issued Date	11/14/2022	Doc. #	382-R0				
Presentation presentations Meterestrementa											
НР КМ Роф FL RPM Frame Voltage Hz Phase FL Amps 28 200 6 1195 355M 20000/460 10 357060931 607706931 Enclosure 1P Ins. Class S.F. Duty Nom. Eff. IEC Design KVA Code Ambibut TEFC 56 F(7) 1.15 S1 IEA65.5 N . 40 Visual Connection Diagram Visual Connection Diagram V1 V1 <t< th=""><th>lasmda</th><th colspan="7"></th></t<>	lasmda										
288 200 6 1195 355M 20038040 60 3 637389319 Enclosure IP Ins. Class S.F. Duty Nom. Eff. IEC Design KVA Code Tempert Tempert TEFC 55 F(') 1.15 S1 IE3.95.8 N - 40 VIA Code Variable Variable Variable Variable Variable N - 40 III IE3.05.8 N - 40 III IE3.05.8 N - 40 Variable	Model: MEGP02006D3TBL			Serie:	IEC Graphene						
288 200 6 1195 355M 200308/40 60 3 637389319 Enclosure IP Ins. Class S.F. Duty Non. Eff. IEC Design KVA Code Temp. (*) TEFC 55 F(*) 1.15 S1 IE3:95.8 N - 40 A W4 U4 V/4 W4 U4 V/2 W2 U2	HP kW Pole	FL RPM	Frame	Voltage	Hz	Phase	FL Amps				
Enclosure IP Ins. Class S.F. Duty Non. Ef. IEC Design KVA Code Temp, (°c) TEFC 55 F(°) 1.15 S1 E395.8 N - 40 In Leads Connection Diagram V/4	268 200 6	1195	355M		60	3					
12 Leads Connection Diagram $\sqrt{4}$	Enclosure IP Ins. Class	S.F.	Duty	Nom. Eff.	IEC Design	kVA Code	Ambient Temp. (°C)				
$\label{eq:productive} Vietnetistics are average expected values. $	TEFC 55 F (*)	1.15	S1	IE3-95.8	Ν	-	40				
Engineering Doc. Written By Doc.# / Rev MEGP02006D3TBL	$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
	All characteristics are average expected values.		Doc Written Pu		Dec # / Per	MEGD0200	6D3TBI				
EDUC ADDROVED BVI Doc legued						MEGP0200					

