
					Issued Date	e 11/14/2022	Doc. #	382-R0
_				ĺ	Issued B	y LD	Issued Rev	0
Tas	hida				IANCE DATA			
		ITP				N		
Model:	MEGP01102D	3TBL			Serie	: IEC Graphene		
HP	kW	Pole	FL RPM	Frame	Voltage	Hz	Phase	FL Amps
150	110	2	3570	315S	230/380/460	60	3	328/284/164
Enclosure	IP	Ins. Class	S.F.	Duty	Nom. Eff.	IEC Design	kVA Code	Ambient Temp. (°C
TEFC	55	F (*)	1.15	S1	IE3-95	Ν	-	40
Inventer Duty								
oad	HP	kW			Efficiency (%)		Power Factor (%)	
ull Load	150	110	Ampe 163		95.		92.8	
4 Load	112.5	82.5	103		95.		92.0	
2 Load	75	55	86.		94.		88.7	
4 Load	37.5	27.5	62.		92.		74.9	
lo Load			34.	6			29.6	6
.ocked Rotor		F	927	.0			0.3	
(N-m)	(% F			FLT)	(%		(Kg-m²)
294		164	.0	1	60.5	27	7.0	1.3978
	Fime(s)	Sound						
Safe Stall 1	Safe Stall Time(s)				rings*		Approx. Motor Weight	
	Hot	Pressure						
Cold / I		dB(A) @ 1M	DE		ND		(kg	
			DE 6317		ND 6317		(kg 944	
Cold / I 2 Cold or Bearings are the only re	1 Hot	dB(A) @ 1M						
Cold / I 2 Cold or Bearings are the only re ncluded Accessor	1 Hot	dB(A) @ 1M						
Cold / I 2 Cold or Bearings are the only re	1 Hot	dB(A) @ 1M						
Cold / I 2 Cold or Bearings are the only re	1 Hot	dB(A) @ 1M						
Cold / I 2 Cold or Bearings are the only re	1 Hot	dB(A) @ 1M						
Cold / I 2 Cold or Bearings are the only re Included Accessor	1 Hot	dB(A) @ 1M						
Cold / I 2 Cold or Bearings are the only re ncluded Accessor	1 Hot	dB(A) @ 1M						
Cold / I 2 Cold or Bearings are the only re	1 Hot	dB(A) @ 1M						
Cold / I 2 Cold or Bearings are the only re ncluded Accessor	1 Hot	dB(A) @ 1M						
Cold / I 2 Cold or Bearings are the only re Included Accessori TC Thermistor	1 Hot commended spar ies:	dB(A) @ 1M						
Cold / I	1 Hot commended spar ies:	dB(A) @ 1M						ļ

150 110 2 3570 315S 230/380/460 60 3 328/284/1 Enclosure JP Jps Class S.E. Duty Nom Eff. JEC Design kVA Code Ambier							Issued Date	11/14/2022	Doc. #	382-R0
PEED TORQUE/CURRENT CURVE Medi: Media: Media: </th <th>7</th> <th></th> <th>bida</th> <th></th> <th></th> <th></th> <th>Issued By</th> <th>LD</th> <th>Issued Rev</th> <th>0</th>	7		bida				Issued By	LD	Issued Rev	0
Medi: MEDIIOZZIE Serie: El Cargene Image: Image: <th></th> <th>U5</th> <th>IIIUU</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		U 5	IIIUU							
HP KW Pole FL RPM Frame Voltage Hz Phase FL Am 150 110 2 3570 3155 230/380/460 60 3 228/28/1 Enclosure IP Ins. Class S.F. Duty Nom. Eft. IEC Design kVA Code Amble Temp. (TEFC 55 F (*) 1.15 S1 IE3-95 N - 40 .ocked Rotor Amps Full Load Locked Rotor (Kg-m2) Full Load Locked Rotor (*%) Pull Up Break Down (%) 927 1.3978 294 164.0 160.5 277.0				5	PEED TORG	UE/CURREN	II CURVE			
150 110 2 3670 3155 230/380/460 60 3 328/284/ Ambie Temp. (* Enclosure IP Ins. Class S.F. Duty Non. Eff. IEC Design KVA Code Ambie Temp. (* TEFC 55 F (*) 1.15 S1 IE395 N - 40 .ocked Rotor Amps Rotor Inertia (Kg-m2) Full Load (N-m) Locked Rotor (%) Pull Up (%) Break Down (%) 927 1.3978 294 164.0 160.5 277.0		Model:	MEGP01102D3T	BL			Serie:	IEC Graphene		
150 110 2 3570 3155 230/380/460 60 3 328/284// Ambie Temp. (I Enclosure IP Ins. Class S.F. Duty Non. Eff. IEC Design KVA Code Ambie Temp. (I Ocked Rotor Amps 55 F (°) 1.15 S1 IE3-95 N - 40 Ocked Rotor Amps Rotor Inertia (Kg·m2) Full Load (N-m) Locked Rotor (%) Pull Up Break Down (%) 927 1.3978 294 164.0 160.5 277.0 900 <td< th=""><th>ł</th><th>HP</th><th>kW</th><th>Pole</th><th>FL RPM</th><th>Frame</th><th>Voltage</th><th>Hz</th><th>Phase</th><th>FL Amps</th></td<>	ł	HP	kW	Pole	FL RPM	Frame	Voltage	Hz	Phase	FL Amps
Enclosure IP Ins. Class S.r. Duty Non. Eff. IEC Design KVA Code Temp. (TEFC 55 F (1) 1.15 S1 IE3.95 N - 40 Jocked Rotor Amps Rotor Inertia (Kg-m2) Rotor Inertia (Kg-m2) Locked Rotor (N-m) Pull Load (%) Locked Rotor (%) Pull Up Break Down (%) 927 1.3978 294 164.0 160.5 277.0	1	150	110	2	3570	315S		60	3	328/284/16
TEFC 55 F (¹) 1.15 S1 IE3.45 N - 40 Jocked Rotor Amps Rotor Inertia (Kg-m2) Full Load (N-m) Locked Rotor (%) Pull Up (%) Break Down (%) Break Down (%) General Content of the content of th	Encl	losure	IP	Ins. Class	S.F.	Duty	Nom. Eff.	IEC Design	kVA Code	Ambient Temp. (°C
Book Rotor Inertia (Kg-m2) Full Load (N-m) Locked Rotor (%) Pull Up (%) Break Down (%) 927 1.3978 294 164.0 160.5 277.0 Current vs Slip Curve and Torque vs Slip Curve 900 900 900 900 900 900 800 700 600 900	TI	EFC	55	F (*)	1.15	S1	IE3-95	Ν	-	40
Amps (Kg-m2) Full Load (N-m) Locked Rotor (%) Pull Up (%) Break Down (%) 927 1.3978 294 164.0 160.5 277.0	Locked Rotor		Rotor Inertia				-			
927 1.3978 294 164.0 160.5 277.0 Current vs Slip Curve and Torque vs Slip Curve 900 800 900 800 900 800 900 800 700 900 900 800 700 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900					i dii Eodd			-		
(V) 90 90 90 90 90 90 90 90 90 90	9	927	1.3978	294						
200 100 0 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 200 100 0 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0	e(N-M)	500							60 50	
200 100 0 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 200 100 0 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0	orqu	-								0
100 - - - - - 100 100 0 - - - - - - 100 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0	F									00
0 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0										
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0										
Slip (pu) Current Torque			0.9	0.8 0.	7 0.6	0.5 0.	4 0.3	0.2 0	-	
					Slip (p	ou) -	Current	- Torque		
	charact	oristics or a	warana avaaatad usluu	95						
	maract		1	es.						
characteristics are average expected values. Engineering Doc. Written By Doc.# / Rev MEGP01102D3TBL	onaraot	Engineering				Doc. Written Bv		Doc.# / Rev	MEGP0110	2D3TBL

					Issued Date	11/14/2022	Doc. #	382-R0
					Issued By		Issued Rev	0
Tas	hidc	1		I			I	
			Motor Cor	nnection Di	agram			
						150.0		
Model:	MEGP01102D3	31BL			Serie:	IEC Graphene		
HP	kW	Pole	FL RPM	Frame	Voltage	Hz	Phase	FL Amps
150	110	2	3570	315S	230/380/460	60	3	328/284/164
Enclosure	IP	Ins. Class	S.F.	Duty	Nom. Eff.	IEC Design	kVA Code	Ambient Temp. (°C
TEFC	55	F (*)	1.15	S1	IE3-95	Ν	-	40
	T L	V3 W3 U3 V1 W1 U1 1 L2 L3	♦V1 ♦W1 ♦ L1 L2 L	U1 V1 .3 L1	W3 U3 V3 W1 U1 V L2 L3 L1	3 •W3 •U3 1 ♥W1 ♥U1 L2 L3		
		(2▲)	(2Y)	(12	2)	(1Y)		
			Y-	Only Start				
			PT P	C Diagram				
			I	7				
Il characteristics are av	≆rage expected va	lues.	I	7		Doc.#/Rev	MEGP01102	

