
|                                               |                 |                        |                       |                 | Issued Date         |              | Doc. #      | 382-R0                         |
|-----------------------------------------------|-----------------|------------------------|-----------------------|-----------------|---------------------|--------------|-------------|--------------------------------|
| Tore                                          |                 |                        |                       |                 | Issued By           | LD           | Issued Rev  | 0                              |
| Tas                                           | na              | <b>Л</b> ТҮР           |                       |                 | ANCE DATA           |              |             |                                |
| Model:                                        | MEGP00376D      |                        |                       | -               |                     | IEC Graphene |             |                                |
| -                                             | 1.347           | Data                   |                       | <b>F</b>        | Maltana             |              | Disco       | <b>EI A m m</b>                |
| <b>HP</b><br>50                               | <b>kW</b><br>37 | Pole<br>6              | <b>FL RPM</b><br>1182 | Frame<br>250M   | Voltage 230/380/460 | <b>Hz</b> 60 | Phase<br>3  | FL Amps                        |
|                                               |                 |                        |                       |                 |                     |              |             | Ambient                        |
| Enclosure                                     | IP              | Ins. Class             | S.F.                  | Duty            | Nom. Eff.           | IEC Design   | kVA Code    | Temp. (°C                      |
| TEFC<br>Inventer Duty                         | 55              | F (*)                  | 1.15                  | S1              | IE2-93.0            | Ν            | -           | 40                             |
|                                               |                 |                        |                       |                 |                     |              |             |                                |
| .oad                                          | HP              | kW                     | Ampo                  | eres            | Efficienc           | v (%)        | Power Fa    | ctor (%)                       |
| ull Load                                      | 50              | 37                     | 59.                   |                 | 93.5                |              | 87.7        |                                |
| 4 Load                                        | 37.5            | 27.75                  | 46.                   |                 | 93.6                |              | 84.2        |                                |
| 2 Load                                        | 25              | 18.5                   | 34.                   |                 | 93.0                |              | 75.8        |                                |
| 4 Load                                        | 12.5            | 9.25                   | 25.                   | .0              | 90.2                |              | 53.8        | 3                              |
| No Load                                       |                 | 1                      | 21.                   | 5               |                     |              | 27.6        |                                |
| ocked Rotor                                   |                 | -                      | 503                   | .2              |                     |              | 0.3         |                                |
| (N-m) (%                                      |                 |                        | LT)                   | (%              | FLT)                | (%           | FLT)        | (Kg-m²)                        |
| Full Lo                                       | ad              | Locked                 | Torq                  |                 | ll Up               | Break        | Down        | Rotor Inert                    |
| (N-m<br>298.9                                 |                 |                        |                       |                 | <b>FLT)</b><br>22.5 |              | FLT)<br>3.3 | (Kg-m <sup>2</sup> )<br>1.2763 |
| 200.0                                         | ,<br>           | 200                    |                       |                 |                     |              | 0.0         | 1.2705                         |
|                                               |                 |                        |                       |                 |                     |              |             |                                |
| Safe Stall T                                  | Гime(s)         | Sound                  |                       | Beari           | ngs*                |              | Approx. Mot | or Weight                      |
| Cold / H                                      | Hot             | Pressure<br>dB(A) @ 1M | DI                    | E               | NDE                 |              | (kg         |                                |
| 22.2/9                                        | .0              | -                      | 6314                  | /C3             | 6313/0              | 400          |             |                                |
| 22.2/9                                        |                 |                        |                       |                 |                     |              |             |                                |
| 22.2/9                                        |                 |                        |                       |                 |                     |              |             |                                |
|                                               | commended spar  | re part(s).            |                       |                 |                     |              |             |                                |
| Bearings are the only re                      |                 | re part(s).            |                       |                 |                     |              |             |                                |
| Bearings are the only re<br>ncluded Accessori |                 | re part(s).            |                       |                 |                     |              |             |                                |
| Bearings are the only re                      |                 | re part(s).            |                       |                 |                     |              |             |                                |
| Bearings are the only re                      |                 | re part(s).            |                       |                 |                     |              |             |                                |
| Bearings are the only re                      |                 | re part(s).            |                       |                 |                     |              |             |                                |
| Bearings are the only re                      |                 | re part(s).            |                       |                 |                     |              |             |                                |
| Bearings are the only re                      |                 | re part(s).            |                       |                 |                     |              |             |                                |
| Bearings are the only re                      |                 | re part(s).            |                       |                 |                     |              |             |                                |
| Bearings are the only re                      |                 | re part(s).            |                       |                 |                     |              |             |                                |
| Bearings are the only re                      | ies:            |                        |                       |                 |                     |              |             |                                |
| Bearings are the only re                      | ies:            |                        |                       | Doc. Written By |                     | Doc.#/Rev    | MEGP0037    | 6D2TB1                         |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                 |               |            |           |           | Issued Date | 11/14/2022   | Doc. #     | 382-R0         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|---------------|------------|-----------|-----------|-------------|--------------|------------|----------------|
| <section-header>  SPEED TORQUE/CURRENT CURRE   Medi: Medic: M</section-header>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7      |                 | bida          |            |           |           | Issued By   | LD           | Issued Rev | 0              |
| Medi: Media Media Normalization   Image: Media Image: Media Image: Media Image: Media Image: Media   Image: Media Image: Media Image: Media Image: Media Image: Media   Image: Media Image: Media Image: Media Image: Media Image: Media   Image: Media Image: Media Image: Media Image: Media Image: Media   Image: Media Image: Media Image: Media Image: Media Image: Media   Image: Media Image: Media Image: Media Image: Media Image: Media   Image: Media Image: Media Image: Media Image: Media Image: Media   Image: Media Image: Media Image: Media Image: Media Image: Media   Image: Media Image: Media Image: Media Image: Media Image: Media   Image: Media Image: Media Image: Media Image: Media Image: Media   Image: Media Image: Media Image: Media Image: Media Image: Media   Image: Media Image: Media Image: Media Image: Media Image: Media   Image: Media Image: Media Image: Media Image: Media Image: Media   Image: Media Image: Media                                                                                                                                                                                                                                                                                       |        | u S             | IIIUU         |            |           |           |             |              |            |                |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                 |               | S          | PEED TORQ | UE/CURREN | IT CURVE    |              |            |                |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | Model:          | MEGP00376D2T  | BL         |           |           | Serie:      | IEC Graphene |            |                |
| 50     37     6     1182     250M     230380460     60     3     125.872.863       Enclosure     IP     Ins. Class     S.F.     Duty     Nom. Eff.     IEC Design     kVA Code     Ambient<br>Temp. (*C       TEFC     55     F (*)     1.15     S1     IE2.930     N     -     40       Locked Rotor<br>Amps     Rotor Inertia<br>(Kg·m2)     Full Load<br>(N-m)     Locked Rotor<br>(%)     Pull Up     Break Down<br>(%)     Break Down<br>(%)       503.2     1.2763     238.3     286.5     222.5     303.3     300.3       Current vs Slip Curve and Torque vs Slip Curve       1000     0     0     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00 <t< th=""><th></th><th>mouon</th><th></th><th></th><th></th><th></th><th>001101</th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                    |        | mouon           |               |            |           |           | 001101      |              |            |                |
| Enclosure     IP     Ins. Class     S.F.     Duty     Nom. Eff.     IEC Design     kVA Code     Amblent<br>Temp. (*C       TEFC     55     F(*)     1.15     S1     IE2.93.0     N     -     40       Locked Rotor<br>Amps     Rotor Inertia<br>(Kg-m2)     Euclead Rotor<br>(N-m)     Duty     Nom. Eff.     IEC Design     kVA Code     Amblent<br>Temp. (*C       503.2     1.2763     298.9     286.5     222.5     303.3     600     (%)     (%)     (%)     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000 <t< th=""><th></th><th>HP</th><th>kW</th><th>Pole</th><th>FL RPM</th><th>Frame</th><th>Voltage</th><th>Hz</th><th>Phase</th><th>FL Amps</th></t<>                                                                                                                                                                                                                  |        | HP              | kW            | Pole       | FL RPM    | Frame     | Voltage     | Hz           | Phase      | FL Amps        |
| Enclosure     IP     Ins. Class     S.F.     Duty     Non. En.     IEC Design     KVA Code     Temp. (*C       TEFC     55     F (*)     1.15     S1     IE2.93.0     N     -     40       Locked Rotor<br>Amps     Rotor Inertia<br>(Kg-m2)     Full Load<br>(M-m)     Locked Rotor<br>(%)     Pull Up     Break Down<br>(%)     Break Down<br>(%)       503.2     1.2763     298.9     286.5     222.5     303.3       Current vs Slip Curve and Torque vs Slip Curve     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600 </td <td></td> <td>50</td> <td>37</td> <td>6</td> <td>1182</td> <td>250M</td> <td>230/380/460</td> <td>60</td> <td>3</td> <td>125.8/72.8/62.</td>                                                                                                                                                                                        |        | 50              | 37            | 6          | 1182      | 250M      | 230/380/460 | 60           | 3          | 125.8/72.8/62. |
| TEFC     55     F(*)     1.15     S1     IE2-93.0     N     -     40       Locked Rotor<br>Amps     Rotor Inertia<br>(Kg-m2)     Full Load<br>(N-m)     Locked Rotor<br>(%)     Pull Up     Break Down<br>(%)     Break Down<br>(%)       503.2     1.2763     288.9     286.5     222.5     303.3       Current vs Slip Curve and Torque vs Slip Curve       000<br>900<br>800<br>700<br>600<br>200<br>100<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Enc    | losure          | IP            | Ins. Class | S.F.      | Duty      | Nom. Eff.   | IEC Design   | kVA Code   |                |
| Rotor Inertia<br>(Kg-m2)     Rotor Inertia<br>(Kg-m2)     Full Load<br>(N-m)     Locked Rotor<br>(%)     Pull Up<br>(%)     Break Down<br>(%)       503.2     1.2763     298.9     286.5     222.5     303.3       Current vs Slip Curve and Torque vs Slip Curve     G00<br>500     G | Т      | EFC             | 55            | F (*)      | 1.15      | S1        | IE2-93.0    | Ν            | -          |                |
| Amps     (Kg-m2)     Full Load<br>(N-m)     Locked Roor     Pull Up<br>(%)     Pull Up<br>(%)     Break Down<br>(%)       503.2     1.2763     298.9     286.5     222.5     303.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Locke  | ed Rotor        | Rotor Inertia |            |           |           | -           |              |            |                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                 | 1             |            |           |           |             | -            |            |                |
| $Current vs Slip Curve and Torque vs Slip Curve \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5      | 03.2            | 1 2763        |            |           |           |             |              |            |                |
| $\left( \underbrace{VP}_{00} \underbrace{O}_{00} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                 | 1.2700        | 200.0      | 200       | .•        |             | ,            | 505.       | .~             |
| 300   -   -   -   -   -   -   200   -   100   100   100   100   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (M-M)  | 700 -<br>600 -  |               |            |           |           |             |              | 40         | 00             |
| 300   -   -   -   -   -   -   200   -   100   100   100   100   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lue(   |                 |               |            |           |           |             |              | 30         |                |
| 200   -   -   -   100   100   100   100   100   100   100   0   0   100   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Toro   | L               |               |            |           |           |             |              | 20         | CC 00          |
| 100 - - - 100 - - - 100   0 - - - - - - 0   1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                 |               |            |           |           |             |              |            |                |
| 0 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                 |               |            |           |           |             |              |            | 00             |
| 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                 |               |            |           |           |             |              | 0          |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                 | 0.9           | 0.8 0.     |           |           |             |              | -          |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                 |               |            |           |           |             |              |            |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                 |               |            |           |           |             |              |            |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                 |               |            |           |           |             |              |            |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                 |               |            |           |           |             |              |            |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                 |               |            |           |           |             |              |            |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                 |               |            |           |           |             |              |            |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                 |               |            |           |           |             |              |            |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | charac | toristics are a |               | <b>2</b> 5 |           |           |             |              |            |                |
| characteristics are average expected values.<br>Engineering Doc. Written By Doc.# / Rev MEGP00376D2TBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | charac |                 |               | es.        |           |           |             | Doc.# / Rev  | MEGP0037   | 6D2TBL         |

|                                           |                   |                                                                        |                                                                | [                                                           | Issued Date                                           | 11/14/2022                                                | Doc. #     | 382-R0                |
|-------------------------------------------|-------------------|------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|------------|-----------------------|
| <b>—</b> ——                               |                   |                                                                        |                                                                | -                                                           | Issued By                                             |                                                           | Issued Rev | 0                     |
| Tas                                       | niac              |                                                                        |                                                                |                                                             |                                                       |                                                           |            |                       |
|                                           |                   |                                                                        | Motor Co                                                       | onnection Dia                                               | agram                                                 |                                                           |            |                       |
| Model:                                    | MEGP00376D        | 2TBL                                                                   |                                                                |                                                             | Serie:                                                | IEC Graphene                                              |            |                       |
| -                                         |                   |                                                                        |                                                                |                                                             |                                                       | <u> </u>                                                  |            |                       |
| HP                                        | kW                | Pole                                                                   | FL RPM                                                         | Frame                                                       | Voltage                                               | Hz                                                        | Phase      | FL Amps               |
| 50                                        | 37                | 6                                                                      | 1182                                                           | 250M                                                        | 230/380/460                                           | 60                                                        | 3          | 125.8/72.8/62.9       |
| Enclosure                                 | IP                | Ins. Class                                                             | S.F.                                                           | Duty                                                        | Nom. Eff.                                             | IEC Design                                                | kVA Code   | Ambient<br>Temp. (°C) |
| TEFC                                      | 55                | F (*)                                                                  | 1.15                                                           | S1                                                          | IE2-93.0                                              | Ν                                                         | -          | 40                    |
|                                           |                   | V4 •W4 U4<br>V2 •W2 •U2<br>V3 •W3 U3<br>V1 •W1 U1<br>-1 L2 L3<br>(2 △) | •V4 •W4<br>•V2 •W2<br>•V3 •W3<br>•V1 •W1<br>L1 L2<br>(2Y)<br>Y | →U2<br>→U2<br>→U3<br>→U3<br>→V3<br>→V3<br>→V3<br>→V3<br>→V1 | W4 U4 V2<br>W2 U2 V<br>W3 U3 V<br>W1 U1 V<br>L2 L3 L1 | 4 W4 U4<br>2 W2 U2<br>3 W3 U3<br>1 W1 U1<br>L2 L3<br>(1Y) |            |                       |
| All characteristics are av<br>Engineering | erage expected va | alues.                                                                 |                                                                | Doc. Written By                                             |                                                       | Doc.# / Rev                                               | MEGP0037   | 6D2TBL                |
| Engr. Date                                |                   |                                                                        |                                                                | Doc. Approved By                                            |                                                       | Doc. Issued                                               |            |                       |

